South River TMDL Project

Linking Mercury Loadings to Water Column Concentrations

Cooperating Agencies

TMDL Modeling Approach

- Total mercury loading leads to fish tissue mercury concentrations. Mercury methylation and bioaccumulation are intermediate steps.
- Mercury loading reductions that will bring fish below the target Hg concentration of 0.5 ppm (0.3 more likely) will be calculated using the simulation model plus the site-specific BAF approach.

Conceptual Model of Total Mercury in the South River

Modeling Framework - HSPF

EXPLANATION		
SURI–Surface runoff from impervious areas	RCHRES-Stream reach or reservoir segment	
SURO–Surface runoff from pervious areas	IVOL-Inflow volume	
IFWO–Interflow	OVO-Outflow volume	
AGWO–Active groundwater flow (base flow)	SURI-Surface runoff from impervious areas	
	SURO–Surface runoff from pervious areas	

Sub-Basin Delineation

Within each subbasin, transport is handled by ~50 different hydrologic response units (HRU) that allow for differences in land use, climatic stresses, hydrologic parameters such as slope, and Hg concentrations

Model Development

1) Develop Hydrologic Model

Calibration Goal : Simulated and observed daily flows match at Waynesboro (01626000) and Harriston (01627500)

2) Develop Sediment Transport Model

Calibration Goal : Simulated loads and concentrations match distribution (cdf comparison) of observed at Waynesboro and Harriston

3) Develop Mercury Transport Model

Calibration Goal : Simulated loads and concentrations match distribution (cdf comparison) of observed at Waynesboro and Harriston

Land Use, Precipitation, Meteorology

Phase V Chesapeake Bay Model

- Land uses
- Meteorological data
- Hydraulic parameters
- Sediment parameters

Daily Streamflow (cfs) – Harriston

Preliminary data subject to revision, Oct. 2007

Flow Duration Curve – Harriston (01627500)

Surface Sediment to River

Hourly time steps

Model simulates SSC (mg/L) and sediment fluxes

Purpose: Improve subsequent simulation of mercury transport

Figure 22: Erosion processes

Sediment Budgeting in River Reaches

Figure 47: Flow diagram of inorganic sediment fractions in the SEDTRN section of the RCHRES Application Module

Hg Transport Modeling

HSPF Modules to be used for Hg Input/Transport

Ground Water :PERLND > AOQUALInterflow :PERLND > IOQUALSediment Associated Hg :PERLND > WASHQS & IMPLND > WASHSDPrecipitation Hg to Stream :RCHRES > CONSPoint Sources of Hg :RCHRES > GQUALSorption/Desorption :RCHRES > GQUAL > ADSDESDownstream Advection :RCHRES > ADVECT (Dissolved Hg)RCHRES > ADVQAL (Sediment associated Hg)

Hg Sorption to Suspended Sediment

- Transfer between dissolved mercury in the water column and mercury sorbed to suspended sediment will be modeled
- HSPF can simulate either equilibrium or non-equilibrium sorption
- Equilibrium sorption will be assumed for Total Hg following the 'shake and bake' batch test results
- Non-equilibrium (rate dependent) sorption might used for Methyl-Hg

Hg Loads

Hg Source	Current Hg Load Estimate (kg/yr)	Data Sources	Model Input
Atmospheric deposition	11 (only 1.1 to river)	EPA Data NADP Program	Assigned Conc for GW and Interflow inputs
Plant outfalls	1 - 5	Dupont data	Point Sources
Plant ground-water discharge	<1	2004-06 GW monitoring reports	GW Inflow – Assigned Hg concentrations
Other point sources	<1 from upper river sources	Flow data + water samples	Point Sources to RCHRES 1-3, 5
Groundwater and diffusion from bed sediments	5 - 20	Water and sediment analyses + loading rates at base flow	GW Inflow – Assigned conc.
Sediment associated Hg to river	10-100	Water analyses Sediment Hg data Loading calculations	Fixed Sed Hg Conc by Reach + Sed Transport
Total	13 - 111		

Alternate TMDL Modeling Approaches

- Adding methylation to the model will probably increase uncertainty in predicted fish tissue Hg concentrations due to poorly constrained parameters and additional steps.
- Greater uncertainty may require greater Hg loading reductions to stay within the margin of safety

End of Presentation

